顯示具有 數學計算 標籤的文章。 顯示所有文章
顯示具有 數學計算 標籤的文章。 顯示所有文章

2013年1月22日 星期二

FabClay from Sasha Jokic



FabClay from Sasha Jokic on Vimeo.

FabClay is project done by Sasha Jokic (Serbia), Starsk Lara (Colombia) and Nasim Fashami (Iran) ,based on the idea of robotic additive manufacturing fabrication, innovative materials and computational tools. The research is being conducted at the Institute for Advanced Architecture of Catalonia (IAAC) in Barcelona at Digital Tectonics course lead by Marta Male Alemany with assistance of Jordi Portell and Miquel Lloveras.

2008年11月13日 星期四

Fibonacci Number(2), 兔子繁殖



<節錄自網路http://home.educities.edu.tw/mario123/problems/fibonacci.htm>
1202年,義大利數學家斐波那契出版了他的「算盤全書」。他在書中提出了一個關於兔子繁殖的問題:

如果一對兔子每月能生一對小兔(一雄一雌),而每對小兔在牠出生後的第三個月裡,又能開始生一對小兔,假定在不發生死亡的情況下,由一對出生的小兔開始,50個月後會有多少對兔子?

在第一個月時,只有一對小兔子,過了一個月,那對兔子成熟了,在第三個月時便生下一對小兔子,這時有兩對兔子。再過多一個月,成熟的兔子再生一對小兔子,而另一對小兔子長大,有三對小兔子。如此推算下去,我們便發現一個規律(如上圖,請點擊見大圖)
----------------------------------------------------------

上一篇貼出了費氏數列的成形方式。這篇列出費氏數列可對應的具體事物(雖然兔子的生育繁殖還是一種推論模型),讓費氏數列脫離冰冷的數理邏輯,似乎指涉一種「真實的」生物繁殖,讓我對於數字玄妙與生物形態之間的關係,不再是兩個分離的世界,數字運作好比繁殖運作般工作,在執行生物任務。

第一次我看到數字在繁殖,真奇妙!

2008年11月12日 星期三

Fibonacci Number(1), 斐波那契數列(費氏數列)





[pic02] A tiling with squares whose sides are successive Fibonacci numbers in length

[pic03] A Fibonacci spiral created by drawing arcs connecting the opposite corners of squares in the Fibonacci tiling; this one uses squares of sizes 1, 1, 2, 3, 5, 8, 13, 21, and 34; see Golden spiral


節錄自wikipedia

斐波那契數列(Fibonacci Sequence),台灣譯為費氏數列。

在數學上,斐波那契數列是以遞歸的方法來定義:

F0 = 0
F1 = 1
Fn = (Fn - 1) + (Fn - 2)
用文字來說,就是斐波那契數列由0和1開始,之後的斐波那契數就由之前的兩數相加。首幾個斐波那契數是(OEIS A000045):

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,………………

特別指出:0不是第一項,而是第零項。

In mathematics, the Fibonacci numbers are a sequence of numbers named after Leonardo of Pisa, known as Fibonacci. Fibonacci's 1202 book Liber Abaci introduced the sequence to Western European mathematics, although the sequence had been previously described in Indian mathematics.

The first number of the sequence is 0, the second number is 1, and each subsequent number is equal to the sum of the previous two numbers of the sequence itself, yielding the sequence 0, 1, 1, 2, 3, 5, 8, etc. In mathematical terms, it is defined by the [pic01] recurrence relation:

That is, after two starting values, each number is the sum of the two preceding numbers. The first Fibonacci numbers also denoted as Fn, for n = 0, 1, 2, … ,20 are:

[F0]0, [F1]1, [F2]1, [F3]2, [F4]3, [F5]5, [F6]8, [F7]13, [F8]21, [F9]34, [F10]55, [F11]89, [F12]144, [F13]233, [F14]377, [F15]610, [F16]987, [F17]1597, [F18]2584, [F19]4181, [F20]6765